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Abstract

Deep learning has enabled major advances across most areas of artificial intel-

ligence research. This remarkable progress extends beyond mere engineering

achievements and holds significant relevance for the philosophy of cognitive

science. Deep neural networks have made significant strides in overcoming

the limitations of older connectionist models that once occupied the center

stage of philosophical debates about cognition. This development is directly

relevant to long-standing theoretical debates in the philosophy of cognitive sci-

ence. Furthermore, ongoing methodological challenges related to the compara-

tive evaluation of deep neural networks stand to benefit greatly from

interdisciplinary collaboration with philosophy and cognitive science. The time

is ripe for philosophers to explore foundational issues related to deep learning

and cognition; this perspective paper surveys key areas where their contribu-

tions can be especially fruitful.
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1 | INTRODUCTION

Deep learning has enabled major breakthroughs in virtually every area of artificial intelligence over the past decade—
including computer vision, game playing, robotics, speech recognition, and natural language processing. In most of
these domains, deep neural networks (DNNs) have matched or exceeded human performance on long-standing chal-
lenges. For example, DNNs surpass humans on standard image classification benchmarks (He et al., 2016), beat world
champions at chess and Go (Silver et al., 2016, 2017), achieve top scores on many tests including medical and law exams
(OpenAI, 2023), and generate text often indistinguishable from human writing (Jones & Bergen, 2023; Schwitzgebel
et al., 2024).

The history of artificial neural networks is deeply interwined with theoretical and empirical research exploring their
adequacy as computational models of human cognition. For much of its history, this research program yielded only
modest empirical results, with neural networks often comparing disfavorably to concurrent symbolic approaches. The
recent achievements of DNNs on real-world challenges stand in stark contrast to the limited success of older neural
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network models. Yet they are often perceived as mere engineering feats, increasingly enabled by product-oriented
research from technology companies rather than academia.

While the main focus of deep learning research may not be on understanding human cognition, it would be naive
to discount the potential contribution of engineering advances to scientific research. Technical breakthroughs can open
up new research directions that catalyze scientific progress, sometimes in unexpected ways. Academic researchers have
been quick to leverage advances in deep learning to build better models in computational linguistics, psychology, and
neuroscience. In return, deep learning researchers are increasingly borrowing from the interdisciplinary toolkit of cog-
nitive science—if not to build models, at least to evaluate them.

This calls for a reappraisal of the place of modern artificial neural networks within the project of cognitive science.
What is the relevance of the progress of deep learning for cognitive science? Conversely, what is the relevance of cogni-
tive science to deep learning research? This paper will provide an opinionated perspective on these questions through
the lens of the philosophy of cognitive science.1 Section 2 provides a very brief outline of the history of neural network
research leading to deep learning Section 3 examines whether and how recent developments in deep learning can
inform research on human cognition. Finally, Section 4 discusses how insights from cognitive science and philosophy
can help address ongoing methodological issues with the evaluation of DNNs and human–machine comparisons.

2 | THE COMING OF AGE OF CONNECTIONISM

Cognitive science has always been centrally informed by theoretical concepts from computer science (Boden, 2008;
Miller, 2003). In its early days, the dominant research program sought to explain human cognition through computa-
tions over structured symbolic representations, analogous to rule-based programs executed by digital computers
(Newell & Simon, 1976). Artificial neural networks (ANNs), also known as connectionist models, have come to play an
increasingly important role in challenging and transforming this classical research program, with a few significant mile-
stones leading to modern DNNs.

ANNs consist of simple neuron-like units connected into networks via weighted connections. The units are segre-
gated into an input layer that receives data to be processed, an output layer to produce adequate responses, and one or
more hidden layers in between that learn to represent features and perform computations that map inputs to outputs.
McCulloch and Pitts laid the groundwork for connectionism by introducing a simplified mathematical model of neuron
functioning, and proving that networks of such neuron-like units can in principle compute any logical function
(McCulloch & Pitts, 1943). Building on this pioneering work, Rosenblatt's perceptron later demonstrated that an ANN
with trainable connection weights could learn to classify patterns, lending key support to connectionist explanations of
learning (Rosenblatt, 1958).

Despite the theoretical dominance of the symbolic approach, connectionism was revived in the 1980s with innova-
tions such as distributed representations, multilayer neural networks with hidden layers allowing nonlinear decision
boundaries, and the backpropagation algorithm for training weights across multiple layers (Rumelhart et al., 1986,
1987). Connectionist models showed promise in explaining psychological phenomena that had eluded traditional sym-
bolic approaches, including aspects of learning, memory, categorization, language, reasoning, and vision (Cohen
et al., 1990; Elman, 1990; Fukushima, 1980; Kruschke, 1992). These initial results challenged the assumption that the
mind performs serial computations over discrete symbolic representations.

The advent of deep learning from the mid-2000s onward enabled much larger and more complex ANN architectures
to be trained effectively (LeCun et al., 2015). This is due to a combination of factors—including better training tech-
niques, the availability of much larger datasets assembled from internet data, and major increases in computational
power. DNNs differ from older connectionist models in several significant ways that account for their superior perfor-
mance on a broad range of challenging tasks (Buckner, 2019). Their depth allows them to hierarchically compose com-
plex concepts from simpler features across many hidden layers with increasing levels of abstraction. They also make
use of sophisticated architectures with heterogenous components to promote specific inductive biases. For example,
convolutional neural networks used in computer vision have convolutional filters tuned to detect specific features in
images regardless of their position, while transformers used in LLMs have self-attention layers that track specific depen-
dencies between lexical items. Other tricks such as sparse activations and regularization techniques prevent overfitting
despite the incredibly large number of trainable parameters in these networks.

Thanks to these innovations, DNNs are much better than previous neural networks architectures at efficiently
learning useful abstract representations and inducing computations that can generalize beyond the specific distribution
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of their training data. In this respect, they can be seen as bringing the connectionist program to fruition, by demonstrat-
ing that neural networks that are no longer bounded by scarse computing resources can overcome, in practice, many of
the putative theoretical limitations leveled against connectionism in the previous decades.

3 | DEEP LEARNING MODELS AS COGNITIVE MODELS

The maturation of the connectionist program in the guise of modern DNNs is eminently relevant to several long-
standing debates in (the philosophy of) cognitive science.2 The most influential criticism of connectionism as a theory
of cognition came from proponents of the language of thought hypothesis, in the form of a dilemma: either connection-
ist models are fundamentally inadequate accounts of cognition, or they merely implement classical symbol manipula-
tion (Fodor & McLaughlin, 1990; Fodor & Pylyshyn, 1988; Pinker & Prince, 1988). If connectionist models are viewed
as genuine alternatives to classical architectures, classicists argued they fail to capture core structure-sensitive proper-
ties of cognition, like productivity and systematicity, because they lack genuinely compositional representations. But if
they can be viewed as implementations of classical systems, then connectionists models are just showing how symbols
and rules could be realized in neural hardware. Either way, classicists concluded that connectionist models come up
short compared to symbolic architectures in explaining core cognitive capacities like language and reasoning. This
dilemma has been revived in the age of deep learning: if DNNs can match human performance on a broad spectrum of
perceptual and cognitive tasks, they must do so by implementing core features of language of thought architectures
(Mandelbaum et al., 2022; Marcus, 2018; Quilty-Dunn et al., 2023).

Connectionists typically resist this dilemma in two ways. The first is to suggest, on the basis of experimental results,
that cognition is not as regimented and systematic as classicists take it to be, and that connectionist models should not
be held to a higher standard than humans themselves (Johnson, 2004). The second is to argue that connectionist models
can in fact account for the structure-sensitive properties of cognition and the constituent structure of mental representa-
tions without merely implementing a classical architecture (Smolensky, 1988). These two strategies are not exclusive;
together, they suggest that connectionist models and human cognition can meet halfway between unstructured input–
output mapping and idealized systematicity.

In recent years, DNNs have moved much closer to bridging the gap with human performance on structure-sensitive
tasks. In particular, an extensive body of work building on insights from cognitive science has probed their capacity for
systematic compositional generalization (Donatelli & Koller, 2023). To rule out confounds such as memorization of
common compositional structures, DNNs can be trained from scratch on synthetic datasets and evaluated on held-out
test samples (e.g., Kim & Linzen, 2020; Lake & Baroni, 2018). In these datasets, the train-test split is carefully designed
such that high accuracy on test samples requires systematically recombining previously learned elements to map new
inputs made up from these elements to their correct output. This line of research has shown that various parameters
can have a significant impact on compositional generalization in DNNs, including their architectural features and train-
ing regime (Csord�as et al., 2021; Kazemnejad et al., 2023; Ontanon et al., 2022; Qiu et al., 2022). When these parameters
are selected appropriately, DNNs can achieve good performance on compositional generalization datasets without
built-in compositional rules.

For example, Lake and Baroni (2023) show that a standard transformer-based neural network trained with meta-
learning can achieve human-like systematic generalization in a controlled few-shot learning experiment, as well as
state-of-the-art performance on systematic generalization benchmarks. Their meta-learning approach consists in train-
ing the network on a stream of artificial tasks, each based on an underlying “interpretation grammar” that specifies
compositional mappings from instructions to output sequences. At test time, the model achieves human-like accuracy
and error patterns, without the need for explicit compositional rules. While meta-learning from different tasks helps
promote compositional generalization, recent research using a standard learning regime has also shown that simply
training a network past the point where it achieves excellent accuracy on the training data can lead it to acquire more
tree-structured computations, and generalize significantly better to held-out test data that require learning hierarchical
rules (Murty et al., 2023).

In line with the second horn of the classicist dilemma, one might interpret these results as providing evidence that,
given the right architecture and training regime, modern DNNs can account for the structure-sensitive properties of
cognition by implementing a language of thought (Quilty-Dunn et al., 2023). However, this conclusion hinges on con-
troversial assumptions about what the relevant notion of implementation ought to be, and what kinds of properties
should be taken as specific evidence of implementing a language of thought (McGrath et al., 2023; Pavlick, 2023;
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Smolensky, 1989). For example, one core feature of language of thought architectures is the ability to perform variable
binding over discrete symbolic representations, where “roles” (variables) and “fillers” (values) are represented indepen-
dently. Mechanistic interpretability research that seeks to reverse-engineer computations in trained DNNs does suggest
they can acquire a mechanism for variable binding (Baroni, 2022; Davies et al., 2023; Elhage et al., 2021; Millière &
Buckner, 2024b). However, this mechanism implements a “fuzzy” form of variable binding making use of vector sub-
spaces that are not always functionally equivalent to discrete memory slots (Olsson et al., 2022); accordingly, role-filler
independence in these networks is not absolute, but comes in degrees. This suggests that while modern DNNs can com-
pute over compositional representations with real constituent structure, this structure is non-classical and should not
be taken to reflect the core properties of a language of thought on pain of trivializing them. For the language of thought
hypothesis to remain substantive, it must commit to specific claims about how representations are composed beyond
pointing to their constituent structure. However, committing to such claims in light of the available evidence about
modern DNNs may undermine the second horn of the dilemma—the view that their successful behavior is best
explained by positing that they merely implement a language of thought architecture.

A related issue concerns the content-specificity of computations performed by DNNs. Neural networks are tradition-
ally assumed to learn many specific input–output mappings. On this view, each layer-to-layer transformation deals with
a given input in a way that depends on the particular content of that input, rather than general computational princi-
ples applied across inputs. In other words, ANNs are generally taken to perform only content-specific computations, by
contrast with classical architectures. However, there is compelling evidence that modern DNNs can also perform non-
content-specific computations, as argued by Shea (2023). For example, episodic deep reinforcement learning models
apply non-content-specific similarity computations to stored memory representations. When a new state is encoun-
tered, the system retrieves all previously stored memories and calculates their similarity to the current state using the
same similarity algorithm, regardless of what the specific contents of those memories are. Transformer-based LLMs also
induce a broad repertoire of non-content-specific computations, including domain-general “induction head” mecha-
nisms that implement the aforementioned capacity for variable binding (Olsson et al., 2022).

One of the notable feature of DNNs, in contrast with classical systems, is that their architecture does not delineate a
strict distinction between content-specific and non-content-specific computations. Rather, as I previously alluded to when
discussing role-filler independence, the content-specificity of DNN computations is a matter of degrees. This is signifi-
cant if we take DNNs seriously as cognitive models that provide genuine alternatives to classical architectures, rather
than mere implementations. For example, it dovetails with recent findings about the behavioral convergence between
DNNs and humans on various classical reasoning tasks. Indeed, LLMs show similar accuracy overall to humans on var-
ious reasoning problems, including natural language inference, syllogism validity, or the Wason selection task. More-
over, both humans and LLMs exhibit “content effects” on reasoning tasks; that is, they tend to perform more accurately
when the content of a reasoning problem is familiar and plausible (Dasgupta et al., 2023). The best LLMs also match
human performance across a range of verbal and non-verbal analogy tasks requiring inductive reasoning about abstract
relations, such as Raven's progressive matrices or letter string analogies, among other abstract reasoning tasks (Geiger
et al., 2023; Han et al., 2023; Mirchandani et al., 2023; Webb et al., 2023).

These empirical results highlight two significant points about the relevance of deep learning to cognitive science.
First, modern DNNs have fulfilled the promise of older connectionist models in matching human performance on
many tasks probing core aspects of cognition. Second, emerging evidence from interventional studies suggests that
DNNs achieve human-like performance on these tasks through mechanisms that differ in nontrivial ways from those
postulated by classical architectures (Millière & Buckner, 2024b). Whether these mechanisms are similar to those of
human cognition remains an open question that should be explored by experimentalists and philosophers of cognitive
science in tandem. At the very least, these findings suggest that the classicist alternative to connectionism is no longer
the “only game in town” (Fodor, 1975)—if it ever was.

The progress of DNNs has important implications for many other ongoing issues in philosophy and cognitive science;
I will briefly highlight two that have attracted a lot of attention recently. The first pertains to the “grounding problem”
originally coined by Harnad (1990): How can symbol-manipulating systems have representations that are intrinsically
connected to the worldly referents of the symbols they manipulate? Without securing such connection, it seems that com-
putational models of cognition would have difficulty escaping the “merry-go-round” of symbols and connecting to the real
world. While the grounding problem originally targeted classical symbolic systems, it applies mutatis mutandis to neural
networks used in natural language processing, such as LLMs, that manipulate linguistic tokens. However, Mollo and Mill-
ière (2023) argue in light of philosophical theories of representation that LLMs can in fact acquire world-involving func-
tions that secure norms of representational correctness relative to the referents of linguistic items.
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Another hotly debated issue concerns the relevance of LLMs to theoretical linguistics and theories of language
acquisition. A wealth of evidence from targeted experiments in computational linguistics suggests that LLMs acquire
sophisticated syntactic knowledge (Linzen & Baroni, 2021; Pavlick, 2022). This knowledge is reflected in the overall
convergence of their predictions with human grammaticality judgments regarding minimal pairs of sentences that dif-
fer only with respect to some target linguistic property (Warstadt et al., 2020). LLMs' representations of syntactic fea-
tures can also be linearly decoded from the activations of the network and manipulated with predictable effects on
behavior (Belinkov, 2022; Hao & Linzen, 2023; Ravfogel et al., 2021). These results call for an examination of the poten-
tial for deep learning to inform linguistic theory (Baroni, 2022; Dupre, 2021; Linzen, 2019). In particular, it has been
argued that LLMs challenge core tenets of generative linguistics, on which statistical approaches to language modeling
relying on linear string order cannot account for the hierarchical structure dependence of syntactic competence
(Chomsky, 1957; Contreras Kallens et al., 2023; Everaert et al., 2015; Piantadosi, 2023). Most LLMs are exposed to a
vastly greater quantity of words than children during their learning phase (Frank, 2023a), which typically limits their
relevance to debates about linguistic nativism. Nonetheless, ongoing efforts to train LLMs in developmentally plausible
learning scenarios may vindicate their usefulness as model learners that can constrain theories of language acquisition
(Millière, forthcoming; Warstadt & Bowman, 2022).

4 | METHODOLOGICAL ISSUES

With the performance of DNNs improving across a range of linguistic and cognitive tasks, the need for robust methods
to evaluate DNNs and compare them with humans under similar conditions is becoming more pressing. Methodologi-
cal insights from the philosophy of cognitive science can inform evaluation practices in deep learning.

Behavioral evaluations based on benchmarks face challenges that increasingly limit their usefulness in the age of
LLMs. New benchmarks tend to saturate very rapidly, although the best-performing models may still exhibit failures
modes in the target domain (Kiela et al., 2021; Ott et al., 2022). The perverse incentive of “SOTA-chasing”—pursuing
state-of-the-art status on benchmark leaderboards—can lead to the exploitation of proxy metrics that diverge from the
underlying evaluation targets, in accordance with Goodhart's law (Gururangan et al., 2018; Manheim &
Garrabrant, 2018). Because LLMs are trained on internet-scale data, benchmark contamination is also a common issue:
test samples can easily leak into the training data, leading to misleading improvements on standard evaluation metrics
(Zhou et al., 2023). Finally, the connection between latent theoretical constructs and operational variables measured
through benchmarks is not always explicit or well supported.

These challenges can be addressed through hypothesis-driven experiments that incorporate best practices inspired
by cognitive science. For example, researchers can use novel stimuli to avoid data contamination; use minimal stimuli
(such as minimal pairs of sentences) to avoid confounds; control the training data (by analogy with controlled rearing
experiments, e.g. Lee et al. (2021)); use multiple tasks to test the same capacity; collect multiple model responses for
each test item; and use appropriate control conditions (Frank, 2023b). Consider for example the question whether
LLMs are capable of acquiring a Theory of Mind (ToM). Using a classic false-belief task, Kosinski (2023) suggests that
GPT-3 exhibits ToM reasoning comparable to 9-year-old children. However, performance success on a single task does
not provide robust evidence of the underlying competence. Indeed, Ullman (2023) shows that minor conceptual task
variations, which maintain the core demands for false belief inference, reveal the model's lack of abstract reasoning
about mental states. Patterns of performance can only constrain inferences about competence given well-supported
background assumptions about the measuring instrument, measuring conditions, and target system.

The distinction between performance and competence cuts both ways (Firestone, 2020). When comparing perfor-
mance across humans and DNNs, it is crucial to create adequately matched testing conditions. For example, Lakretz
et al. (2022) suggest that transformer models like GPT-2 are fundamentally limited in their capacity to process long-
range recursive nesting compared to humans. In their experiment, however, human subjects received substantial train-
ing with examples, instructions, and feedback—while GPT-2 was tested “zero-shot” without equivalent context.
Lampinen (2023) shows that after adding context analogous to human training, LLMs actually perform better than
humans even on the most challenging conditions. These examples highlight how careful one should be in interpreting
both success and failure modes of DNNs on tasks originally designed for humans. Methodological principles from com-
parative and developmental psychology can help mitigate comparative biases in experimental design and analysis
(Buckner, 2021).
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5 | CONCLUSION

The progress of deep learning over the past decade has been more significantly driven by engineering achievements
than by theoretical insights from cognitive science. This certainly does not mean that it is irrelevant to cognitive sci-
ence; nor does it mean that cognitive science has nothing to contribute to deep learning research in return. Modern
DNNs do not merely mark incremental improvements over older neural networks models, but represent a turning point
for the connectionist program. While they still fall short of human cognitive competence in various ways, and show
noteworthy dissimilarities with human biases and developmental trajectories, they also demonstrate an unprecedented
convergence with human performance on many long-standing challenges—many of which were once widely thought
to be hard limitations of connectionist architectures. More than ever, neural networks show promise as cognitive models
that can be systematically studied and manipulated by scientists in carefully controlled conditions to enable surrogative
reasoning about core aspects of cognition. More than ever, the need for rigorous evaluations of neural networks
requires interdisciplinary insights, particularly when it comes to theoretically-informed comparisons with humans on
linguistic and cognitive tasks. Philosophers of cognitive science have much to contribute to both theoretical and meth-
odological issues raised by deep learning.
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cognition (see Millière and Buckner (2024a) for discussion).

2 While I will mainly focus on psychology here, DNNs also occupy an increasingly important place in cognitive neuro-
science (e.g., Doerig et al., 2023; Lindsay, 2024; Richards et al., 2019).
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